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Abstract. In this paper we generalize the construction of a bicrossproduct
Hopf algebra from a factorization of a finite group X into a sitbgroup &
and a subsemigroup H. In addition, we show that these bicrossproduct
Hopf algebras are self-dual as Hopf algebras whenever they correspond
to factor-reversing automorphisms of X.

1 Introduction

Group factorizations are very common in mathematics. Among their uses is the bi-
crossproduct construction which is one of the primary sources of non-commutative and
non-cocomutative Hopt algebras. These bicrossproduct Hopf algebras have been intro-
duced by Majid [10] and Takeuchi [16]. Since then, bicrossproduct Hopf algebras have
been extensively studied (see (2], 3], [4], [6] and [9]). These algebras have many applica-
tions, for example Majid in [10] showed that they can be considered as a systems combine
quantum mechanics with geometry {see also [11]).

in 1996, Beggs et al. (5] have computed the quantum double consiruction of Drinfeld
{7] for the bicrossproduct Hopf algebra associated to the factorization X = G M, where G
and M are subgroups of the group X, which led to an interesting generalization of crossed
modules to bicressed bimodules. In addition, they showed that basis-preserving self-
duality structures for the bicrossproduct Hopf algebras are in one-to-one correspondence
with factor-reversing group isomorphisms.

In this paper we show that Hopf algebras can be constructed by using more general
factorizations of finite groups. More specifically, we show that the bicrossproduct Hopft
algebras can be associated to a factorization X = GH, where G is a subgroup of the gIoup
X and H is asubsemigroup of X. In addition, it is shown that basis-preserving self-duality
structures for these bicrossproduct Hopf algebras are in one-fc-one correspondence with
factor-reversing semigroup isomorphisms.
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Throughout this paper we assume that all groups mentioned, unless otherwise stated,
are finite and that all vector spaces are finite dimensional over a general field & . The

conventions and notation are mainly taken from (5. The reader is referred to [12), [13),
(14] and [15] for the basic results of Hopf algebras.

2  Preliminaries

Let & be a fleld and & a semigroup with identity. Denote the k-vector space generatad
by & by kG Defining the multiplication on kG by

(Z az:z> {yLZG by?/) = Z ( Z axby>z:

reld 2E(d wymz

kG becomes a ring. The map nee « b — kG given by ma(a) = al where 1 is the identity
element of G makes kG a k- algebra. The k-algebra k(Y is said to be the Serigroup
k-algebra of G {1].

Let X' = GM be a group which factorizes into two subgroups ¢ and M. Then each
group acts on the other through left and right actions t>: M x G — Gand < M x G — M
defined by su = (5 > u){s < u), where u £ G and s € M. These actions obeying the
following conditions for all s,¢ € M and u,v € G [5]:

sde=s, (s<Au)dv=s<(uw); edu=c¢, (st)<qu= (s> u)t )
eu=u, s (Dbu)={st)>u s>e=e, s (uv) = (s > ul(s < u) > v).

(1)

Assoclating o this factorization, we can define the bicrossproduct Hopf algebra H =
EM w< k() with basis 5 @ d, where s € M and « € G. The product, unit, coproduct,
countt and antipode are defined as follows (5]

(@)D E) = buma(5t®8,), L= e®d,

Als®4d,) = Z $R:R(s<x) D6y, ex(s®d,)= e

el my=n

S(S & (LJ} = {5 <3 ’Lé)~l & ()_(s&u)ﬂ.

Algo, we can define the dual of H which is again a bicrossproduct Hopf algebra H* =
k(M) o« kG with basis é, ® u where s € M and » € G. The product, unit, coproduct,
counit and antipode are defined as follows [3]:

G ®v) = daulb@u), L= 5,0

A, @u)= > 520w ®6 9 el ®u) =4,

m e amn=zs

S8, @ u) = digquy1 @ (8> u)"L
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3 Self-duality of bicrossproducts

Here we study the bicrossproduct Hopf algebras associated to a factorization of a
group into a subgroup and a semisubgroup with idensity and a left inverse property. This
may have some relevance to the work of Green, Nichols and Taft 18} concerning one sided
Hopf algebras structures. If it exists, the left inverse for an element ¢ € H will be denoted
by a“, A

Let X = (UH be a group which factorizes into a subgroups G and a semisubgroup
with identity /. Then H acts on G through the right action o H x & — (& and
(i acts on H through the left action <@ H x G — H. These actions are defined by
au = (o > ul{e < u), where g € G and ¢ € H. It is easy to show that these actions
obeying the following conditions for all a,b € H and w,v & ¢

ade=a, adujdu=ad(ur); e<u=e¢ (ab) Su={o<g(b>u))bau
\ ‘ (2)
e u=u at-{bru)=(ab)>u avec=e at (w)=(atu)legu)>v)
It can be seen that we can associate fo this factorization a bicrossproduct bialgebra
H =EH »a k{G) with basis a®4, where o € H and v € G. The product, unit, coproduct
and counit are defined as follows:

@® 800 8) = bupulab @), Tu=D e®d,

i

Ma®dy= > a®L®a<2)00, o) =4,
oyEGzy=u
If H posses a left inverse o” for each a € H, then H becomes a Hopf algebra and the
antipode will be given by:

Sla®d) = (a<au)’ @ fupy-.

Due to these formulas, it can be noted that H = kH w< k(@) has the smash product
algebra structure by the induced action of H and the smash coproduct coalgebra structure
by the induced coaction of (. :

In the symbol H = kH »< £(G), kH is the semigroup Hopf algebra of the semigroup
H with identity and left inverse property. A basis of kH is given by the slements of H ,
with multiplication given by the semigroup product in H , and comultiplication given by
Ao=a®a fora e H. Also, k() is the Hopf algebra of functions on & with basis given
by &, fer w € G . The product Is just multiplication of functions, and the coproduct is

Aby= Y 86,
TyeGoy=u

Mereover, the t part means that k[ acts on &{G), and the < part means that k(G)
coacts on kH.

in addition, a dual bicrossproduct bialgebra H* = k(H 04 &G can be defined with
basis 0, @ u where o € H and 4 € . The product, unit, coproduct and counit are defined
as foilows:

(L@ u)(6 B ) = faauplla®uv), L= L®e,
_ a
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Alfa®u)= Y 5,80bwR 60U enllou) =i,
mmne H mn=a
If H posses the left inverse property for each & € H, then H* becomes a Hopf algebra
and the antipode will be given by:

S{ba ®u) = Spquye ® (o> u)t
it can be noted that what has been said about M, can be dually said about H*.

Definition 3.1 Let X be a finite group ond X = GH be factorization of X into two
subsemigroups G and H with identities. A semigroup tsomorphism 71 X — X is defined
to be factor-reversing if flg) € H forallg e G and §(a) € G for alla e H.

We need the following lemmas:

Lemma 3.2 Let X = GH be factorization of a group X into a subgroup G and a sub-
semigroup H with identity. Then for the algebra H = kH 4 k{(G) ,where k(G) is the
algebra of function on G and kI s the semigroup alygebra of H | an algebra homomor-
phism: H — H* which sends basis elements to basis elements can be constructed from a
factor-reversing isomorphism of X = GH.

Proof. We Suppose that s a semigroup isomorphism and we define a linear map
foH - H" by ~
Flo @ b} = Ofapwy © fla < u). (3)

We want to prove that f is an algebra homomorphism. As fis a semigroup homomorphism,
we should have f{bu) = f{&)f(v) and also fbv) = f((bv)(b<av)) = fbo v)fb<w), for all
be H andve &, Thus

jb)iw) = flb > v)f(b<v)
= (Jlbv) > b v)){f(b > v) < §(b<v)).

By the uniqueness of factorization, we have
jb) = flbw) &= fb gv), | (4)
fu) = (b v) af(b<v). (5]

Now to prove that § is an algebra homomorphism, we show that A)"((a @ &)b@5)) =
HoxdHb®d,) fora®6,,0046, € H,abe Hand wv & G We start with the left
hand side as follows:

flla®b,)(b® Ou)) = f(dmbbv(ab ® 5y))
= fju,bb'uéf(abvu) & f(ab < U)



On the other hand,

Ta® 6,10 ® 8,) = (Samy ® 13 90} oy {6 <))
= b af(a qu), b (O tamwy @ fla < uif{b <u))
= Oty fivon) Oxonu) © ({2 G u)(b av))
= Oy ppolasy ® f{{a < u)(b <v))
= O podiap-pouy ® f((a <t (0> v))(b < v))
= Oy boudiasny) @ f{(ab < v).

We have utilized here the fact that f is an isomorphism and put w = b> v to aveid having
a zero answer. Next we check the effect of f on the unit, f.e., we want to show that
)({EH) B 1}{*‘ S0

L) =’%<Ze®6 )= D Beny ® He < u)

Hu)

wZﬁyu)®f(€) Zéf(u)®ﬁ—z5 @ e = Ly,

where @ = f(u) is an element of K, as required. M

Now, the guestion arises "does the same result hold for the coalgebra”. The answer is
in negative as the counit property is not applicable unless we agsume that our semigroup
H posses, at least, the lefs inverse property as we see in the following lemma.

Lemma 3.3 Let X = GH be faciorization of a group X into o subgroup G and a subsemi-
group with wdentity and left dnverse property H. Then for the coalgebra H = kH < k()
swhere k((7) is the algebra of function on G and kH 1is the semigroup algebra of H, there
15 o coalgebra homomorphism: H — H* which sends basis elements to basis elements can
be constructed from o factor-reversing isomorphism of X = GH.

Proof. We Suppose that f 1s & semigroup isomorphism and we consider the same linear
map f: H — H* defined in the proof of lemma 3.2 by

f((l ® Oﬁu) = 5§(a|>u) ® f(@ < u)’ (6}

where o € H and u € G, To check that f satisfies the conditions to be a coalgebra
homomorphlsm we start by showing that Af{a ®4,) = ff ® f)A’a, ® 4y ) as follows:

A?{CL ® Ju) = A(é-f(a,bu) @ f(a < LLD
= Y G ®@(nefadu)®d,® o <u).

mn=flal>u)



On the other hand,

G@?}A(a@(m =(f&f) Z (a®6,)® ((a<m)® dy)

LY==

Z (a®68.)@f((a<z)®6,)

i

- Z Sapz) @ F(a <1 2) @ Sy (aamyny @ (0 < z) Q)

LY

= > Saey ®fla < T)®5f(fawm @ fla < zy).

Y=

Puttingm =jlar 2} and n = ({a <2} & y) yields

We have used the assumption that § is a semigroup homomorphism. Also, we et

ne-fa<u) =f{adz)>y) »>fa<du)
= f({a z} 7 ar (2y})) > flo )
=H{azz) oz u)) > faau)
=faa) > (floz>u) - flo<u)
= flat>2)"" > (o)
= fla 555)'1 > (Harz) - fla<z))
=f{{azz) Har z))fla <)
= fle)f{a < z)
= flo <),

as required. Next we check the effect of | on the counit i.€., we want to prove that
er- {2 ® 6y} = ey (a® 8,) which we do as follows:

ex-fla®6,) = 0 (Ottapny B fla < u))
= Offapu).e
= fiLL,e ﬁ 5'}{(@ ey CSu)

To have a non-zerc answer we have put f(a > u) = e which implies that e > u = e as fis
an isomorphism. Applying a® to both sides gives u = ¢. W

Theorem 3.4 Let X = GH be factorization of a group X into a subgroup G and o
subsemigroup with identity and left inverse property H. Then for the Hopf algebra H =
kH o k(G) ,where k{G) 1s the algebra of function on G and kH is the semagroup algebra
of H, there ts o Hopf algebro isomorphism: H — H* which sends bagis elements to basis
elernents can be constructed from o factor-reversing isomorphism of X = GH.
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Proof.  We Suppose that fis a semigroup isomorphism and-we consider the same linear
map f:H -+ H" defined in the proof of lemma 3.2 by

Ha @ du) = dyanuy ® fla < u), (7)
where a € H and u € . The conditions for f to be an algebra and a coalgebra isomor-
phism follow from lemmas 3.2 and 3.3. To prove that §is a Hopf algebra isomorphism,

we need to check the antlpode property and the inevitability of §. First, we need the
following calculations:
(auf = ((a > u)o qu))*
wtat = umho = (aqu)lan wt = (o e uw)Fla s )
={{aau)’ > {a>u) o au) alesu)h,

By the uniqueness of factorization, we get

wbeuT = (egu)t e (s )T and o = (a<guw)t < (o u)h). (8)

Due to the fact that fis a semigroup isomorphism, we get
fluty = fu) = (f()® = flla < ) > (o u)™), 9)
fla®) = (fa))* = (f(2)) 7 = f{{a 9 w)F < (aeu)™). (10}

Now to show that the antipode S is preserved under f, ie., }—S(a &by = S?(a ® 8,), we
do the following

f
= 0 anyonfanuy-1) ® Fla < w)" < (o u)™h)
= Sigupye ® fla)™
On the other hand,
SHa®5.) = S(fla g d)
= S(é au) @ fla < u))
= O((apuyaracunt © (Fla > u) > fa<w))™
= Qise ® fla) 7
as required. Finally, to see that’fv: H* — H is invertible, we define = : H* —s H by
F®u)= e > u) 8 it jacu), (11)
and show that : ?f"l(c?a @ u) = pf’*lﬂfd(a ® dy) = 1d(0 ® 4,) where id is the identity map, as
follows
filew) =f(f G aw)
=F(F ar u) ® f-1c)
= Ofts-tasup -t aauy) ® H{T @ > uj < F e gu))
= Jypeifa)) & 7 (w) |
=3, @ u.

| )



The third eqnality is due to the identities f(a) = fla > u) & f{a < u) and flu) =flatu) <
fla <t u) with the fact that fis an isomorphism. Alsc we have

f 1(f(a ® Ou!)

FH brtasa) ® fla < u))

FrHfla > u) o fla<u))® 081 (flamu) af{a<u))
= FH(f{a)) ® b5

=0E 6‘{.&1

e ®4,)

It

as required. Therefore, { is a Hopf algebra isomorphism. M

Following theorem reveals that the converse of Theorem 3.4 is also true.

Theorem 3.5 Let X = GH be foctorization of o group X into a subgroup G ond o
subsemigroup with tdentity and left inverse property H. Then the factor-reversing iso-
morphisms of X = GH give rise to Hopf algebra self-duality pairings {,) : HQH — k
on the Hopf algebra H = kH >4 k(G) where k(G) 1s the Hopf algebra of function on G
and kH s the semigroup Hopf algebra of H. The corresponding pairing is given by

{G ® 51“ b® 5u> = f5u,f(b{>u)5u,5(b@)-

Proof.  Assume that Nf‘“ is & Hopf algebra isomorphism which sends basis elements to
basis elements of our two Hcpf algebras, and we want to prove that we can induce a group
isomorphism 7! from f . We start with functions §:  x G — Hand g: H xG = G

given by B
a® 6.) = yuny @ gla, ). (12)

As ? is an algebra isomorphism, it preserves the unit and the product. Starting with the
unit, we get

fln) =FD e®du) Zﬁe@ou; - Z Bien) © 8(e, ), (13)

6 Ble,u)
but, since f is an algebra isomorphism we have

)=l = > & @e, (14)

for some s € H. Comparing equations (13) and (14} gives
gle,u) = e (15)
Now, for the product we have

Hlo® 60 ®6,)) = Fbupmu(ab® 5,)) |
= Sy pouf(ab @ 8,) (16)
= Gu 5(>U\Oh\ab v} ey Q(ab JJ\
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On the other hand,

f(a’ 3 gqu(b & 51)) = (&](a,u) i g(aluj)(df)(b.v) & g(b) U))
= (EEJ(G,U)Cu(a,u),h(b,w(5b(a,u) 2 9(@: u)glb, v)) (17)
= Og(au)<n(aw), s (Gniaw @ gla, w)a(b,v)).

To have non-zero answer we should have uw = b > v and
b, v) = bla,u) < gla,u), (18)

Equations (16)and (17) imply that for all a,b € H and u,v € &, the following equalities
are satisfied:

glad, v) = gla, u)s(b, v}, (19)
hiab,v) = bla,u). . : (20;

Note that if we put v = e in (19) and substitute u = b &> v, we get,
glab, e) = g(a,e)g(b,e). (21)

Next, as | is a coalgebra isomorphism, it preserves the counit and the coproduct. So
we start with the counit as follows

ey flo @ Ou) = €3 {(jﬁ{a,u) ® g(a’: ’U,)) = Cgh(mu},e:) (22)
but as’fuis a coalgebra isomorphism, we have
E3-1(0 ® 8,) = exa @ 6,) = by (23)
Combining (22) and (23)and pubting « = e, to have a non-zero solution, imply

hla,e) =e. (24)

Now we calculate the coproduct under f to have

A?(ﬂ- ® é-u) = A(éh{%u} ® g(aj u})
_ Z bm @ (nt> gla,u)) ® 6, ® gla,u). (25)
mn:h(@:u)

On the other hand, since f is a colagebra isomorphism, we have

Afla ®@6,) = (5@ H)A(a ® d,) _
= G@U( Z (e®d)®{a<z)® c)'y)>

ry=u .
= Z }J(a © ) @fﬂ{a QL) @ by)

TY=1

= Z fgb{a,&:) & .g'(a) x} & 517(&\1%',3#) ®© g(a' < T, yj

Zy=u

(26)



From equations (25) and (26), we get
b(a, 4} = mn = hla, 2)h(a < z,y) = b(a, zy).
Put:ting o =g gives
bla,u) = hle, z)ble < ,y) = ble, o)ble, y) = hle, zy). (27)

We also have, from the coproﬁupt formula , that ni>g{e, u) = g(a, z) where n = hla<iz,y)
and zy = u. Putting z = ¢ gives

hla de,y) s gla,u) = gla,e),

or
bla,y) &> gla,u) = gle,e). (28)

Sinee we have zy = u, putting ¢ = ¢ gives y = u. Thus equation {28) can be rewritien as
hia,w) > gla,u) = gla, e). (29

From (18) with v = b% > w and b = e we get
hla,u) <glo,u) =fle w) (30}
Combining equations (29} and (30) gives
0le,u)s(a,u) = (bla,uv) > gla,u}j(ble,u) < g{a,u)) = gla,e) Hle, u). (31)

Putting a = e in (20) yields
Hlbv) =hle,u)

Knowing that w = b v implies
hib,v) = fle b= v), (32)

Also, from the coproduct formula, we get gl < z,y) = gla,u) with v = 7y, ie., gla <
z,y) = gle,zy). Putting v = e gives

gla<z,e) =glo,z).
combining equations (32) and (31) gives
hle,a > ulgla <u,e) = bhla,u)gla, u) = g(a, e)ble,u). (33)

Equations (13},{24), (21),(27), and (33} provide the needed conditions ensuring that
the map §~!: X — X defined by ’

i~ {au) = gla, e)hle, u).

1s & group homomorphism. It can be noted that our Hopf algebra map ﬂf’*i is cersainly
that one obfaned by ', which is well defied due to G M H = {e}. Since f~! is a Hopf
algebra isomorphism, it is invertible. So if we put

f(ﬁa e ’UZ} = h{{l, 'U::] ® 55((5&,1.4.}:

it can be easily shown that | is obtained by the group isomorphism { by using a similar
technique. M
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