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ALGEBRAIC PRESENTATION OF CLASSICAL NETS
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Abstract

The geemetric construction of a (i1, m)-net is known, see for example [2)
end {4]. In this paper, we discuss the algebraic presestation of 2 very
important type of symmetrie nets, which is called classical symmetric
nets, and begin by giving the algebraic presentation of the classical
(1, g)-nets, where g is a prime power and then provide its

generalization to get the algebraic presentation of classical symmetric

(q""?, g) -nets, where g is a prime power and n z 2 is integer. Finally,
we give the generalization of this construction.

Introduction

A t—(v, kL) design D is an incidence structure with points, &
points on a block and any subset of ¢ points is contained in exactly A
blocks, where v > &, & > 0, The number of blocks is denoted by b and the
number of blocks on a point by r. D is symmetric if b=y or,
equivalently, r = k. D is resolvable if its blocks can be partitioned into
subsets, of m blocks, calied parallel classes, such that each class
partitions the point set of D. In this case, two blocks are said to be
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parallel if they are in the same parallel class and non-parallel otherwise.
The number of parallel classes is r.

7 is called affine if it is resolvable so that any two ndn-parallel
blocks meet in a comstant number p of points. It is easy to show that
m = u/k and;if r » I, then p = k/m. See for example [2], or [3] for more

details. The dual D" of a design T ig the incidence structure whose
points and blocks are, respectively, the blocks and points of D with
induced incidence. Affine 1-designs are also called nets, see [2}."A_fﬁr‘1e

1-designs D for which D" is also affine are necessarily symmetric and
are called symmetric nets. Inthiscase b = v = um? and k = r = pm. That
is, D is an affine 1 - (um?, um, um) design whose dual D" is also affine

with the same parameters. For short we call such a symmetric net a
{11, m)-net. The parameters y, m are, respectively, the index and class

number of the net.

If D is a symmetric net we shall refer to the parallel classes of D as
block classes of T and to the parallel classes of D" as point classes of 2.

Let D be an affine 1 -{y, &, r} design whose dual D" ig resolvable.
Then D is symmetric if and only if D" is affine (see [5]).

Let g be a prime power and let F be the field GF{g). The points

and hyperplanes of the projective geometry PG{n, g) are, respectively, '

the 1-dimensional and the n-—dimensional subspaces of the
{n + 1)—dimensional vector space V, (g} over F.

A point P of the projective geometry can be represented in
homogeneous coordinates x = (xg, %1, ..., %, ), where not all the x; are 0

and 1If 0 » » & F, the Pis also represented by Ax.

Similarly, a hyperplane A can be represented by homogenecus
coordinates a’, ‘The point Pis on the byperplane A if and only if

n
L. — . .
xa = 0 = E x4,
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The points and hyperplanes of PG(n, q} form a symmetric

- qn+1_1 q"‘~1 qnﬂlml
g~-1 " g~1" ¢g-1

design. Let U be any hyperplane in the projective geometry PG(n, q) and
let u be any point on U. Deleting U from PG{n, q) gives the affine
geometry AG(n, q). The points and hyperplanes of AG(n, ¢} form an

_ R n-1
affine 2—((1”, q" i’_.g"(}TTl‘] design. Also delete all hyperplanes of

PG(n, q) that lie on u. The remaining points and hyperplanes form the
classical symmetric net (also known as the Desarguesian symmetric net)

with m = g and u = "2, where g is a prime power.
Algebraic Presentation of {1, ¢)-net

First we consider the special situation of the classical or Desarguesian
(1, g)-nets, where q is a prime power and then describe the more general

case,

The classical (1, ¢}-net D is obtained by deleting a parallel class of

lines from the t_mique {up to isomorphism) affine plane of order g (over
the field F = GF{g)).

Let D be (1, g)-net. Then the algebraic presentation of D can be

given as follows:
Points: Ordered triples (x, y, 1), x, ¥ &€ GF(q).
Lines: Ordered triples .{1, p.rl b r e GFg).
Incidence: {x, y, DI[L, p, rle x + py + r = 0.
This net is a self-dual net.

We give an outline of the proof of this.

Consider the map y : D — D* defined as follows:
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v : (x, » 1) = [L, 3, x] on points.
i, p, 11 = (r, p, 1) on blocks.
Clearly v is bijective. Now we show w is an isomorphism:
wole, y, DIL pr]leox+py+r=90
< r+py+x=0
& (r, p, ML 2, %]
e y(x, 3, VIl porl
This proves that w is an isomorphism,

Henge D is isomorphic to D",

A parallel class of points or of lines is determined uniquely by an

element of GF(g). This is easily verified.

For any ¢ € GF(g), the points (x, ¢, 1), x & GF(g), form a point class
and for any e € GF(g), the lines {1, e, 7} r € GF(g), form a line class.

So we can represent a point class or line class unigquely by an element
of GF(q).

Algebraic Representation of {q”’z, g)-net

Now we shall give the algebraie representation of (g""%, q)-net.
Let F = GF(g). Define a design I1 as follows:

Let n 2 2 be an integer. Then

Points: Ordered n-tuple {x;, %3, .., X,), where x; € F, 1< i <n.

Blocks: Given @y, @, .., @41, be& F and the subset of points

(xy, X3, .. X,) that satisfy the equation
ayxy +agXg v b @y gXpoy t Xy = b

is a block of T1, dencted by the ordered n-tuple lay, a9, az, o @n-ti b}
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Proof. Clearly [T has ¢" points and g™ blecks. The number of points
on a bloek {a;, as, ag, ., a,.y; b] is g™, To see this, note that we can
choose x;, © =1, 2, ..., n—~1 arbitrarily (this can be done in ¢*! ways)

and then x, is determined uniquely by the equation of the block,

We show that [1 is resolvable as follows. Given ay, ag, ..., 9,1 € F,
the set of blocks {ay, @, ..., @,_1; b), where b & F forms a paraliel class

of blocks. To see this, note that given any point p = (p{, ps, ..., p,), then

p is on the unique block of this set with b = Z:;l ;P + Py

Therefore, these blocks partitionqthe points of [T

~ Thus 7] is resolvable since its blocks can be partitioned into parallel
clagses.

Now we show [] is affine. Consider two non-parallel hlocks with
eguations:

Xy +UoXg + e+ Ay 4 Xuy 1 + Xy = b, (1)
A]X] + AhTg o+ Tpy Xy + X,y = DL (2)

Bince the blocks are not parallel, a; = af, for all i. Without loss of °

generality, we may assume a; # qj.

Now
()~ (2= (ay —al)xy +{ag —ab)xg +- +{op 1 ~Qpoy)Xpoy = b b, 6)]
Since ¢y —aj = 0, givén any values in F for xs, 23, ..., Xyt {q"% choices),

we can find x; uniquely to satisfy (3). Then x,_; follows uniquely from
(1) or (2).

Therefore, blocks (1} and (2) meet in exactly g”2 points.
Henece [ is affine.

To show that the dual of [T {IT") is affine too, according to Hine and

Mavron theorem (see [5]), it is enough to show [1* is resclvable.
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It is easy to verify that given x;, %, .., ¥,y € F, the ¢ points
(xy, %9, o Xpo1, ¥), y & F form a point parallel class in JI. A given
block {0y, as, ... a,;: b] is on the unigue point of this point class with

. n-1i
¥ = b - Z a0y
i=0
Alternatively, the fact that [T is affine foliows by showing that in fact []
is self-dual. It ie easily checked that the following correspondence
between points and blocks of [T is a polarity (ie., an isoiorphism map
whose square is the identity): B
(xe, Xiy ey xn) L d [&‘Co, X1y vy Xyt *xn]

to see that the algebraic representation we gave previously is isomorphic
to the classical net, with U the hyperplane with homogeneous coordinates
f1,0,0,..,0] and u is the point with homogensous coordinates

(6,0, .., 0 1)

First note that each point not on UV has unigue homogeneous
coordinates of the form {3, x|, ..., x,), since the first coordinate is net (.

Similarly, a hyperplane not on u has unique homogeneous coordinates of
the form (ag, @y, - @51, 1) The correspondence given below between

points and blocks of T] and the points and hyperplanes, respectively, of
the hyperplane obtained by deleting from PG{n, ¢} the hyperplane U and

the points on {/ and dually for u,
(JC}, X, xn) > (1, X1y X2, wen xn)
fay, G, s @p_ys 8] & (=0, 0y, ag, o @y 1

is obviously bijective. We can readily see that it is incidence preserving

and therefore an isomorphism, as follows:

{x1, %, .., xp)1lay, ag, .., ap_1; b} in the net
&5 ayxy + Qa¥g oo F Qp¥p.] F X, = 0
<> —b o+ TyXy + AgXg + -+ Uy 3 Xy + Xp = G

& {(lx)xg - x, ) I8 on [~bajag - a,q, 1] in PGln. g).
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Generalizations

The construction of the classical symmetric {g"%, g)-nets can be
generalized by replacing the field GF{q) with more general algebraic
gtructure F. For example, _F could be 4 right nearfield. This is essentially
like a field but without the requirement that the left distributive law
#(y + 2) = xy + xz holds. A left nearfield is defined analogously. A proper
nearfield ie one which is not a field. The smallest order of a proper

nearfield is 9.

£ (F, +, ) is a right nearfield, then F* = (F, +, @) is a left nearfield,

where x -y =y @ % forall x, y ¢ F.

Another example is when F is a semifield. A semifield satisfies all
conditions for a field except that under multiplication the non-zero
eleients form a loop but not necessarity a group.

A
i

Characterization of the Classical Symmetric Nets

The cdlassical (¢" %, g)-symmetric nets can be characterized

combinatorially for the case n > 2. The line joining two non-parallel

points in a net is the intersection of all biocks containing the two points.
In a (p, m}-net N, a line has most m points. Furthermore (see Mavron
[10]), if ¢ > 1, then NV is a classical symmetric net if and only if every hne
has m points.

The case u =1 is different. In this case, a symmetric (1, m)-net is

just an affine plane of order m with the lines of one parallel class deleted.
For any affine plane, Desarguesian or not, the resulting structure will
always satisfy the condition that all lines have m points.
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