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Abstract

We consider two homogeneous linear differential equations and we use
Nevanlinna theory to determine when the solutions of these differential
equations can have the same zeros or nearly the same zeros.
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1 Introduction

In this paper, we will see some ways in which Nevanlinna theory can be used to
study the solutions of complex differential equations. First of all, we are going
to state some useful theorems needed to prove our new results.

In particular, we will take the equation

w′′ + Pw = 0, (1)

where P is a polynomial of degree n, as an object of study. It is well known that
every solution of (1) is an entire function.

In 1955, Wittich [14] proved the following theorem.

Theorem 1.1 If f 6≡ 0 is a non-trivial solution of w′′ + Aw = 0, with A 6≡ 0
entire, then we have:
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(i) T (r, A) = S(r, f).

(ii) If f has finite order, then A is a polynomial.

(iii) If a is a non-zero complex number, then f takes the value a infinitely often,
and in fact

N

(
r,

1

f − a

)
v T (r, f).

Here we use standard notation of Nevanlinna theory from [7].

The following facts follow from the asymptotic representation for solutions of
(1); we refer the reader to [2, 9] for details.

Theorem 1.2 Let P be a polynomial of degree n, and let w be a non-trivial
solution of the equation (1). Then, w has order of growth equal to n+2

2
. Moreover,

if w is a solution of (1) which has infinitely many zeros, then we have

lim inf
r→∞

N(r, 1
w

)

r(n+2)/2
> 0. (2)

We refer the reader to the book of Laine [10], the influential paper [2], and to
[1, 3, 4, 5, 6, 11, 12, 13] for extensive results on the zeros of solutions of linear
differential equations with entire coefficients.

In the next section, we consider two differential equations with solutions having
the same or nearly the same zeros.

2 A theorem for the general case

To state our main result we need the following lemma.

Lemma 2.1 Suppose w′′ = −Pw where P is a polynomial. Then for j ≥ 0,
there exist polynomials Qj and Rj such that

w(j) = Qjw +Rjw
′. (3)

Proof: In fact, we have the following initial cases:

j = 0 ⇒ Q0 = 1, R0 = 0;

j = 1 ⇒ Q1 = 0, R1 = 1;

j = 2 ⇒ Q2 = −P, R2 = 0;

j = 3 ⇒ Q3 = −P ′, R3 = −P ;

j = 4 ⇒ Q4 = P 2 − P ′′, R4 = −2P ′. (4)
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Now we proceed by induction; assume that j ≥ 0 and that (3) is true. Then we
have

w(j+1) = Q′jw +Qjw
′ +R′jw

′ +Rjw
′′

= Q′jw +Qjw
′ +R′jw

′ −RjPw

= (Q′j −RjP )w + (Qj +R′j)w
′

= (Qj+1)w + (Rj+1)w
′,

where Qj+1 = Q′j −RjP and Rj+1 = Qj +R′j.

Since Qj+1 and Rj+1 are polynomials, the induction is complete. �

Theorem 2.1 Let P 6≡ 0 be a polynomial of degree n. Let w 6≡ 0 be a solution
of (1). Assume that w has infinitely many zeros. Suppose that we have an entire
solution v 6≡ 0 of the differential equation

v(k) +
∑

1≤j≤k−2

Bjv
(j) + Av = 0, k ≥ 2, (5)

such that A and Bj are entire functions with∑
1≤j≤k−2

T (r, Bj) + T (r, A) = o(r(n+2)/2), as r →∞, (6)

where the sum
∑

1≤j≤k−2 should be interpreted as empty when k = 2. Assume

that N(r) = o(r(n+2)/2) where N(r) counts both zeros and poles of v
w

. Let

v = Lw. (7)

Then one of the following possibilities holds.

(a) L is constant, and

A = −Qk −
k−2∑
j=1

BjQj, (8)

where Qk and Qj are defined by Lemma 2.1.

(b) L is not constant, but L satisfies

k∑
m=0

[(
k

m

)
L(m)Rk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

]
= 0, (9)

and A satisfies

A = −

(
k∑

m=0

[(
k

m

)
L(m)

L
Qk−m +

k−2∑
j=1

(
j

m

)
Bj
L(m)

L
Qj−m

])
, (10)

where Rk−m, Rj−m, Qk−m and Qj−m are also defined by Lemma 2.1.
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(c) If B1, B2, · · · , Bk−2 are polynomials, and case(b) holds, then A is a polyno-
mial.

There is no loss of generality in assuming that there is no term in w′ in (1) and
that there is no term Bk−1 in (5). This is because for any equation

y(m) + Am−1y
(m−1) + · · ·+ A0y = 0,

with entire coefficients Aj, the change of variables y = UY , where mU ′/U =
−Am−1, gives an equation

Y (m) +Bm−2Y
(m−2) + · · ·+B0Y = 0

and Y has the same zeros as y.

From Theorem 2.1 we will deduce the following results for the cases k = 2, k = 3
and k = 4.

Theorem 2.2 Let P 6≡ 0 be a polynomial of degree n. Let w 6≡ 0 be a solution
of (1). Assume that w has infinitely many zeros. Suppose that we have an entire
solution v 6≡ 0 of the differential equation

v′′ + Av = 0, (11)

such that A is an entire function and N(r) counts zeros of v which are not zeros
of w and zeros of w which are not zeros of v. Assume that

N(r) + T (r, A) = o(r(n+2)/2).

Then v
w

is a constant and A = P .

Example 2.1 Obviously we may take v = w and A = P .

Example 2.2 We give an example to show that T (r, A) = o(r(n+2)/2) is neces-
sary in Theorem 2.2. To show this put v = weg where g is an entire function.
Then we have

v′′

v
=
w′′

w
+ 2g′

w′

w
+ g′′ + g′2

= −P + g′′ + g′2 + 2g′
w′

w
= −A.

Now, if we put g′ = w then we get

−A = −P + w′ + w2 + 2w′.
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So A is entire and
T (r, A) = O(r(n+2)/2).

But, v
w

= eg = e
∫
w is not a constant. So, Theorem 2.2 is not true for T (r, A) 6=

o(r(n+2)/2).

Theorem 2.3 Let P 6≡ 0 be a polynomial of degree n. Let w 6≡ 0 be a solution
of (1). Assume that w has infinitely many zeros. Suppose that we have an entire
solution v 6≡ 0 of the differential equation

v′′′ + Av = 0, (12)

such that A is an entire function with T (r, A) = o(r(n+2)/2) and N(r) = o(r(n+2)/2),
where N(r) counts both zeros and poles of v

w
. Then v = Lw, where L′′ = P

3
L and

A = 2
3
P ′ + 8

3
P L′

L
is a polynomial.

Example 2.3 The exceptional case in the conclusion can occur in Theorem 2.3.
For example, take L = eQ where Q is a polynomial, and set

P

3
=
L′′

L
= Q′2 +Q′′,

so that P is a polynomial. Then

L′′ =
P

3
L, L′′′ =

P

3
L′ +

P ′

3
L.

If w solves (1) then v = Lw satisfies

v′′′ = L(−P ′w − Pw′) + 3L′(−Pw) + 3
P

3
Lw′ +

(
P

3
L′ +

P ′

3
L

)
w

and so v solves (12) with

A =
2

3
P ′ +

8

3
P
L′

L

=
2

3
P ′ +

8

3
PQ′,

which is also a polynomial.

Theorem 2.4 Let P 6≡ 0 be a polynomial of degree n. Let w 6≡ 0 be a solution
of (1). Assume that w has infinitely many zeros. Suppose that we have an entire
solution v 6≡ 0 of the differential equation

v′′′ +Bv′ + Av = 0, (13)

such that A and B are entire functions with T (r, A) + T (r, B) = o(r(n+2)/2).
Assume that N(r) = o(r(n+2)/2), where N(r) counts both zeros and poles of v

w
.

Then v = Lw and one of the following holds.
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(a) L is constant and A = P ′, B = P .

(b) L is non-constant and L′′ = 1
3
PL− 1

3
BL and

A =
8

3
P
L′

L
+

2

3
P ′ +

1

3
B′ − 2

3
B
L′

L
.

Example 2.4 To show that case (b) can occur in Theorem 2.4, we can use
Example 2.3, with B = 0.

Example 2.5 We give an example to show that T (r, A) + T (r, B) = o(r(n+2)/2)
is necessary in Theorem 2.4. To show this put v = weg where g is an entire
function. Then we have

v′′′

v
=
w′′′

w
+ 3

w′′

w
g′ + 3

w′

w

(
g′′ + g′2

)
+ g′3 + 3g′g′′ + g′′′

= −P ′ − P w
′

w
− 3Pg′ + 3

w′

w

(
g′′ + g′2

)
+ g′3 + 3g′g′′ + g′′′

= −Bv
′

v
− A.

Now, if we put g′ = w then we get

−Bv
′

v
− A = −P ′ − P w

′

w
− 3Pw + 3

w′

w

(
w′ + w2

)
+ w3 + 3ww′ + w′′.

So

−B
(
w′

w
+ g′

)
− A = −P ′ − P w

′

w
− 3Pw + 3

w′2

w
+ 3w′w + w3 + 3ww′ + w′′.

Then

−B
(
w′

w
+ w

)
− A = −P ′ − P w

′

w
− 3Pw + 3

w′2

w
+ 3ww′ + w3 + 3ww′ + w′′.

We want A to be entire. Put −B = −P + 3w′, then

−A = −P ′ − 2Pw + 3ww′ + w3 + w′′

and since w′′ = −Pw, then we get

A = P ′ + 3Pw − 3ww′ − w3. (14)

Then A and B are entire functions. So

T (r, A) + T (r, B) = O(r(n+2)/2).

But, v
w

= eg = e
∫
w is not a constant. This shows that case (a) does not hold.
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Now, we check whether case (b) holds or not. From case (b) we have

A =
8

3
P
L′

L
+

2

3
P ′ +

1

3
B′ − 2

3
B
L′

L

=
8

3
Pw +

2

3
P ′ +

1

3
(P ′ − 3w′′)− 2

3
(P − 3w′)w

=
8

3
Pw +

2

3
P ′ +

P ′

3
+ Pw − 2

3
Pw + 2ww′

= 3Pw + P ′ + 2ww′.

But this and (14) are not the same, because if they are, then

P ′ + 3Pw − 3ww′ − w3 = 3Pw + P ′ + 2ww′

and so
w3 = −5ww′.

Dividing by w3 gives

1 = −5
w′

w2
,

and by integrating we can write

z + c =
−5

w
, where c is a constant,

which is impossible since w is transcendental entire. So case (b) also does not
hold.

Therefore, Theorem 2.4 is not true for T (r, A) + T (r, B) 6= o(r(n+2)/2).

Theorem 2.5 Let P 6≡ 0 be a polynomial of degree n. Let w 6≡ 0 be a solution
of (1). Assume that w has infinitely many zeros. Suppose that we have an entire
solution v 6≡ 0 of the differential equation

v(4) + Av = 0, (15)

such that A is an entire function with T (r, A) = o(r(n+2)/2) and N(r) = o(r(n+2)/2),
where N(r) counts both zeros and poles of v

w
. Then v = Lw and one of the fol-

lowing holds.

(a) L is constant and so are P and A.

(b) L is non-constant, S = L′

L
is a rational function, and P = S2 + 2S ′, while

A = 5P
L′′

L
+

5

2
P ′
L′

L
+

1

2
P ′′ − P 2

and A is a polynomial.
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Example 2.6 To show that case (b) can occur in Theorem 2.5, take L = Y 2 =
eQ where Q is a polynomial and set

Q′ = S = 2y = 2
Y ′

Y
, P = S2 + 2S ′ = 4(y2 + y′)

so that P is a polynomial. Then

L′ = 2Y Y ′,

L′′ = 2Y ′2 + 2Y Y ′′ = 2Y ′2 +
P

2
L,

L′′′ = PL′ +
P ′

2
L,

L(4) = PL′′ +
3

2
P ′L′ +

P ′′

2
L.

If w solves (1) then v = Lw satisfies

v(4) = L
(
(P 2 − P ′′)w − 2P ′w′

)
+ 4L′(−Pw′ − P ′w) + 6L′′(−Pw)

+ 4

(
PL′ +

P ′

2
L

)
w′ +

(
PL′′ +

3

2
P ′L′ +

P ′′

2
L

)
w

and so v solves (15) with

A = 5P
L′′

L
+

5

2
P ′
L′

L
+

1

2
P ′′ − P 2

= 5P (Q′2 +Q′′) +
5

2
P ′Q′ +

1

2
P ′′ − P 2,

which is also a polynomial.

3 Proof of Theorem 2.1

Let w and v be as in the hypotheses. Since w has infinitely many zeros, then by
Theorem 1.2 we have (2).

Claim A: We claim that w has simple zeros and

N

(
r,

1

w

)
= N

(
r,
w′

w

)
.

This holds by the existence-uniqueness theorem [9].

From equation (1) and Lemma 2.1, we have (3).
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From (3), (7) and by using Leibniz’ rule, we get, for 1 ≤ j ≤ k,

v(j) =

j∑
m=0

(
j

m

)
L(m)w(j−m)

=

j∑
m=0

(
j

m

)
L(m) (Qj−mw +Rj−mw

′) (by Lemma 2.1)

=

(
j∑

m=0

(
j

m

)
L(m)Qj−m

)
w +

(
j∑

m=0

(
j

m

)
L(m)Rj−m

)
w′. (16)

From (5) and (16), we find that

−Av = −ALw

= v(k) +
∑

1≤j≤k−2

Bjv
(j)

=

(
k∑

m=0

(
k

m

)
L(m)Qk−m

)
w +

(
k∑

m=0

(
k

m

)
L(m)Rk−m

)
w′

+
k−2∑
j=1

Bj

[(
j∑

m=0

(
j

m

)
L(m)Qj−m

)
w +

(
j∑

m=0

(
j

m

)
L(m)Rj−m

)
w′

]
.

Now, we can write, for 1 ≤ j ≤ k − 2,

j∑
m=0

(
j

m

)
L(m)Qj−m =

k∑
m=0

(
j

m

)
L(m)Qj−m,

and

j∑
m=0

(
j

m

)
L(m)Rj−m =

k∑
m=0

(
j

m

)
L(m)Rj−m,

because
(
j
m

)
= 0 when j < m ≤ k.
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So,

−ALw =

[
k∑

m=0

(
k

m

)
L(m)Qk−m +

k−2∑
j=1

Bj

(
k∑

m=0

(
j

m

)
L(m)Qj−m

)]
w

+

[
k∑

m=0

(
k

m

)
L(m)Rk−m +

k−2∑
j=1

Bj

(
k∑

m=0

(
j

m

)
L(m)Rj−m

)]
w′

=

[
k∑

m=0

(
k

m

)
L(m)Qk−m +

k∑
m=0

k−2∑
j=1

(
j

m

)
BjL

(m)Qj−m

]
w

+

[
k∑

m=0

(
k

m

)
L(m)Rk−m +

k∑
m=0

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

]
w′

=

(
k∑

m=0

[(
k

m

)
L(m)Qk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Qj−m

])
w

+

(
k∑

m=0

[(
k

m

)
L(m)Rk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

])
w′.

Then we get

0 =

(
k∑

m=0

[(
k

m

)
L(m)Qk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Qj−m

]
+ AL

)
w

+

(
k∑

m=0

[(
k

m

)
L(m)Rk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

])
w′,

and so

0 =
k∑

m=0

[(
k

m

)
L(m)Qk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Qj−m

]
+ AL

+

(
k∑

m=0

[(
k

m

)
L(m)Rk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

])
w′

w
. (17)

Now, we have three cases.

Case (I): If L is a constant, then w solves (5) and, by using Lemma 2.1, we get
the following equations{

w(k) +
∑

1≤j≤k−2Bjw
(j) + Aw = 0,

−w(k) +Qkw +Rkw
′ = 0.
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By adding these two equations and using (3) again, we obtain

0 =
∑

1≤j≤k−2

Bj (Qjw +Rjw
′) + Aw +Qkw +Rkw

′

=

(
A+Qk +

∑
1≤j≤k−2

BjQj

)
w +

(
Rk +

∑
1≤j≤k−2

BjRj

)
w′.

Then, we get(
Rk +

∑
1≤j≤k−2

BjRj

)
w′

w
+ A+Qk +

∑
1≤j≤k−2

BjQj = 0.

Now, if Rk +
∑

1≤j≤k−2BjRj ≡ 0, then A+Qk +
∑

1≤j≤k−2BjQj ≡ 0 and
so we have (8) and conclusion (a).

Suppose next that Rk +
∑

1≤j≤k−2BjRj 6≡ 0; then

w = 0⇒ w′

w
=∞⇒ Rk +

∑
1≤j≤k−2

BjRj = 0.

Recall that all zeros of w are simple. We deduce that

N

(
r,

1

w

)
≤ N

(
r,

1

Rk +
∑

1≤j≤k−2BjRj

)

≤ T

(
r, Rk +

∑
1≤j≤k−2

BjRj

)
+O(1)

= o
(
r(n+2)/2

)
.

But this contradicts (2).

Case (II): Suppose that L is not constant and (9) holds. Then from (17) we
get (10) and conclusion (b) of the theorem.

Suppose in addition that B1, B2, · · · , Bk−2 are polynomials. Since R0 = 0
and R1 = 1 in (4) we see from (9) that L satisfies a homogenous linear
differential equation of order k − 1 with polynomial coefficients, and so
L has finite order. Furthermore, (10) and the lemma of the logarithmic
derivative now give T (r, A) = m(r, A) = O(log r), so that A is a polyno-
mial. This completes the discussion of Case (II) and the proof of part (c)
of the theorem.

It remains only to show that the following case is impossible.
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Case (III): Supposed that L is not constant and (9) does not hold, that is

k∑
m=0

[(
k

m

)
L(m)Rk−m +

k−2∑
j=1

(
j

m

)
BjL

(m)Rj−m

]
6≡ 0.

Let S = L′/L. We first compare N(r, S) with N(r). Recall that all zeros of
w are simple. On the other hand, v solves a differential equation of order
k. So, zeros of v have multiplicities less than or equal to k − 1.

So, L = v
w

has zeros with multiplicities at most k−1, and has simple poles.
Then, we have

N(r, S) = N

(
r,

1

L

)
+N(r, L)

≤ N

(
r,

1

L

)
+N(r, L)

= N(r) (18)

≤ (k − 1)N

(
r,

1

L

)
+N(r, L)

≤ (k − 1)N(r, S).

Claim 1: We claim that

T (r, S) ≤ o
(
r(n+2)/2

)
for r outside a set E of finite linear measure.

To prove this, we use the fact that Q0 = 1 and R0 = 0 in Lemma 2.1 to
write (17) in the form

0 =
L(k)

L
+ A

+
k−1∑
m=0

L(m)

L

[(
k

m

)(
Qk−m +Rk−m

w′

w

)
+

k−2∑
j=1

(
j

m

)
Bj

(
Qj−m +Rj−m

w′

w

)]
.

(19)

We can write, for 1 ≤ m ≤ k,

L(m)

L
= Sm + Um−1(S),

where Um−1(S) is a polynomial in S, S ′, S ′′, · · · , S(k) with constant coef-
ficients and total degree at most m − 1. This follows immediately from
Lemma 3.5 in [7], and is easily proved by induction.
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This gives us an integer q > 0 such that (19) may be written as

Sk =

q∑
j=0

(
aj + bj

w′

w

)
Si0,j (S ′)

i1,j (S ′′)
i2,j · · ·

(
S(k)

)ik,j
, (20)

where iµ,j ≥ 0 are integers and

k∑
µ=0

iµ,j ≤ k − 1

for each j. Here aj and bj are polynomials in A, Bµ, Qµ and Rµ, and so
satisfy

m(r, aj) +m(r, bj) = o
(
r(n+2)/2

)
as r →∞.

By Clunie’s lemma [10, p. 39] we obtain

m(r, S) ≤ o
(
r(n+2)/2

)
+O(log+ T (r, S)) (21)

for r outside a set E of finite linear measure.

Now, we use (18) and (21) to get

T (r, S) = N(r, S) +m(r, S)

≤ N(r) +m(r, S)

≤ o
(
r(n+2)/2

)
+O

(
log+ T (r, S)

)
and so

T (r, S) = o
(
r(n+2)/2

)
for r outside a set E of finite linear measure. This proves Claim 1.

Claim 2: We claim that

T (r, S) ≤ o
(
r(n+2)/2

)
for all large r.

This follows from [10, Lemma 1.1.1].

Now, dividing (17) by L shows that if w′

w
has a pole at z then either

A2 =
k∑

m=0

[(
k

m

)
L(m)

L
Rk−m +

k−2∑
j=1

(
j

m

)
Bj
L(m)

L
Rj−m

]
= 0

at z or

A1 =
k∑

m=0

[(
k

m

)
L(m)

L
Qk−m +

k−2∑
j=1

(
j

m

)
Bj
L(m)

L
Qj−m

]
+ A =∞

13



at z.

Once we have Claim 2, we can write (17) as

A1 + A2
w′

w
= 0, (22)

where T (r, Aj) = o
(
r(n+2)/2

)
, j = 1, 2 and A2 6≡ 0 by the assumption of

Case (III).

Now, by using Claim A and (22), we get

N

(
r,

1

w

)
= N

(
r,
w′

w

)
≤ N

(
r,

1

A2

)
+N(r, A1)

≤ T (r, A2) + T (r, A1) +O(1)

≡ o
(
r(n+2)/2

)
.

Hence,

lim
r→∞

N
(
r, 1

w

)
r(n+2)/2

= 0.

But this contradicts (2). Therefore, Case (III) cannot occur. �

4 Proof of Theorem 2.2

Assume the hypotheses of Theorem 2.2. Taking k = 2 in Theorem 2.1, we have
two cases to consider.

Case (a): L is a constant and

A = −Q2 = −(−P ) = P (by using (8) and Lemma 2.1).

Case (b): L is not constant, but

0 =
2∑

m=0

(
2

m

)
L(m)R2−m

= LR2 + 2L′R1 + L′′R0

= 2L′ by using Lemma 2.1.

But this implies that L is constant, a contradiction. �
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5 Proof of Theorem 2.4

Assume the hypotheses of Theorem 2.4. Taking k = 3 and B1 = B in Theorem
2.1, we have two cases to consider.

Case (a): L is a constant and

A = −Q3 −B1Q1 = −Q3 = P ′ (by using (8) and Lemma 2.1).

But, since w solves (13) we have

w′′′ +Bw′ + Aw = 0

and so
w′′′ +Bw′ + P ′w = 0. (23)

Also, by differentiating (1) we get

w′′′ + P ′w + Pw′ = 0. (24)

Now, (23) and (24) give P = B.

Case (b): L is not constant and

0 =
3∑

m=0

[(
3

m

)
L(m)R3−m +

(
1

m

)
B1L

(m)R1−m

]
= LR3 +B1L+ 3L′R2 + 0 + 3L′′R1 + 0 + L′′′R0 + 0

= −PL+BL+ 3L′′

and so

L′′ =
1

3
PL− 1

3
BL. (25)

Differentiating (25) we get

L′′′ =
1

3
P ′L+

1

3
PL′ − 1

3
B′L− 1

3
BL′. (26)

Also, we have

−A =
3∑

m=0

[(
3

m

)
L(m)

L
Q3−m +

(
1

m

)
B1
L(m)

L
Q1−m

]
= [Q3 + 0] +

[
3
L′

L
Q2 +B1

L′

L

]
+

[
3
L′′

L
Q1 + 0

]
+

[
L′′′

L
Q0

]
= −P ′ − 3P

L′

L
+B

L′

L
+
L′′′

L
.

15



Thus,

A = P ′ + 3P
L′

L
−BL

′

L
− L′′′

L
.

Using (26) we get

A = P ′ + 3P
L′

L
−BL

′

L
− 1

3
P ′ − 1

3
P
L′

L
+

1

3
B′ +

1

3
B
L′

L

and so

A =
8

3
P
L′

L
+

2

3
P ′ +

1

3
B′ − 2

3
B
L′

L
.

�

6 Proof of Theorem 2.3

We will deduce Theorem 2.3 from Theorem 2.4, since (12) is just (13) with B = 0.

Assume the hypotheses of Theorem 2.3. Then v and w satisfy conclusion (a) or
(b) of Theorem 2.4 with B = 0. But conclusion (a) gives P = B = 0, which is
impossible, and so we must have conclusion (b). Since B = 0 this gives L′′ = P

3
L

and A = 2
3
P ′ + 8

3
P L′

L
as asserted, and A is a polynomial by part (c) of Theorem

2.1. �

7 Proof of Theorem 2.5

Assume the hypotheses of Theorem 2.5. Taking k = 4 and B1 = B2 = 0 in
Theorem 2.1, we have two cases to consider.

Case (a): L is a constant and

A = −Q4 = −P 2 + P ′′ by using (4).

But, differentiating (1) two times gives

0 = w(4) + P ′′w + 2P ′w′ + Pw′′

= w(4) + (P ′′ − P 2)w + 2P ′w′

Since we also have w(4) + Aw = 0, this gives

0 = 2P ′w′

and so P must be constant and so must A.

16



Case (b): L is non-constant and L satisfies, using (4),

0 =
4∑

m=0

(
4

m

)
L(m)R4−m

= LR4 + 4L′R3 + 6L′′R2 + 4L′′′R1 + L(4)R0

= −2LP ′ − 4L′P + 0 + 4L′′′ + 0

= 4L′′′ − 4L′P − 2LP ′

and so

L′′′ = L′P +
1

2
LP ′. (27)

Since this is a linear differential equation and P is a polynomial it follows
that L is an entire function.

We write (27) in the form

P ′ + 2
L′

L
P = 2

L′′′

L
. (28)

It is then elementary to show that

P = 2
L′′

L
−
(
L′

L

)2

+
c

L2
(29)

with c a constant. Also L is not a polynomial, since P (∞) 6= 0.

Claim 1: We claim that ρ(L) = (n+ 2)/2 and

lim inf
r→∞

T (r, L)

r(n+2)/2
> 0. (30)

To prove this we use Wiman-Valiron theory [8]. Take z0 such that |z0| = r,
|L(z0)| = M(r, L) and r 6∈ E, where E is the exceptional set of finite
logarithmic measure. Then,

L′

L
(z0) ∼

ν(r, L)

z0
,

where ν(r, L) is the central index, and

L′′

L
(z0) ∼

ν(r, L)2

z20
,

c

L(z0)2
=
o(1)

z20
.

Now, we have, for some c1 6= 0,

c1z
n
0 ∼ P (z0) = 2

ν(r, L)2

z20
(1 + o(1))− ν(r, L)2

z20
(1 + o(1)) +

o(1)

z20

= (1 + o(1))
ν(r, L)2

z20
.

17



So,

ν(r, L)2 ∼ c1z
(n+2)
0

and so using cj to denote non-zero constants,

ν(r, L) ∼ c2r
(n+2)/2 (r 6∈ E).

Therefore,

ν(r, L) ∼ c2r
(n+2)/2 ( for all r →∞),

since we may choose r′ < r < r′′ with r′ ∼ r ∼ r′′ and r′, r′′ 6∈ E. So the
maximum term µ(r, L) satisfies

log µ(r, L) = c3 +

∫ r

c4

ν(r, L)
dt

t

∼ c5r
(n+2)/2.

Also,

µ(r, L) ≤M(r, L) ≤ 2µ(2r, L).

This gives

c5r
(n+2)/2 ∼ log µ(r, L) ≤ logM(r, L)

≤ log µ(2r, L) + log 2

≤ c6r
(n+2)/2.

Similarly, we have

T (r, L) ≤ logM(r, L) ≤ 3T (2r, L).

So

T (r, L) ≤ c6r
(n+2)/2

and

T (r, L) ≥ 1

3
logM(

r

2
, L) ≥ c7r

(n+2)/2.

This leads to ρ(L) = (n + 2)/2 and (30) which completes the proof of
Claim 1.

Claim 2: We claim that c = 0 in (29). If this is not the case then (29)
and the lemma of the logarithmic derivative give

m

(
r,

1

L

)
= O(log r).
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But then

T (r, L) = T

(
r,

1

L

)
+O(1)

≤ m

(
r,

1

L

)
+N

(
r,

1

L

)
+O(1)

= o(r(n+2)/2),

which contradicts (30).

Hence, c = 0 in (29) as asserted and this completes the proof of Claim 2.

Now L is entire, and we write, locally, L = Y 2 and S = L′

L
= 2Y

′

Y
= 2y.

Then (29) gives

P = 2(S2 + S ′)− S2

= S2 + 2S ′

= 4(y2 + y′)

and so

Y ′′ =
P

4
Y.

Hence, Y is an entire function. But

N

(
r,

1

Y

)
=

1

2
N

(
r,

1

L

)
= o

(
r(n+2)/2

)
and so Y has finitely many zeros, by Theorem 1.2. Hence y and S are
rational functions and A satisfies, using (4) and (10),

−A =
4∑

m=0

(
4

m

)
L(m)

L
Q4−m

= Q4 + 4
L′

L
Q3 + 6

L′′

L
Q2 + 4

L′′′

L
Q1 +

L(4)

L
Q0

= P 2 − P ′′ − 4P ′
L′

L
− 6P

L′′

L
+
L(4)

L

and so

A = P ′′ − P 2 + 4P ′
L′

L
+ 6P

L′′

L
− L(4)

L
. (31)

Differentiating (27) and dividing by L gives

L(4)

L
= P

L′′

L
+

3

2
P ′
L′

L
+

1

2
P ′′.
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By substituting this in (31), we get

A = P ′′ − P 2 + 4P ′
L′

L
+ 6P

L′′

L
− P L

′′

L
− 3

2
P ′
L′

L
− 1

2
P ′′

and so

A = 5P
L′′

L
+

5

2
P ′
L′

L
+

1

2
P ′′ − P 2.

Then we can write

A = 5P (S ′ + S2) +
5

2
P ′S +

1

2
P ′′ − P 2

= 5P

(
P − S2

2
+ S2

)
+

5

2
P ′S +

1

2
P ′′ − P 2

=
5

2
P 2 − 5

2
PS2 + 5PS2 +

5

2
P ′S +

1

2
P ′′ − P 2

=
3

2
P 2 +

5

2
PS2 +

1

2
P ′′ +

5

2
P ′S.

Finally, A is a rational function and so a polynomial. �

Example 7.1 Suppose that w′′ = −Pw and P is a constant. Then

w(4) = −Pw′′ = P 2w,

w(6) = P 2w′′ = −P 3w,

w(8) = −P 3w′′ = P 4w.

So, v(k) + Av = 0, v = w, is possible for all even k, where

A = (−1)1+k/2P k/2

is also a constant.
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